O.P.Code: 23EE0209

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Regular Examinations February-2025 DC MACHINES & TRANSFORMERS (Floatricel and Floatronics Engineering)

(Electrical and Electronics Engineering)					
Tim	e: (3 Hours	Max.	Mark	s: 70
		PART-A			
1		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)	001	Ŧ.,	07.5
1	a	What are the major parts of a DC generator?	CO1	L1	2M
	b	Compare lap winding and wave winding used for DC machine armature.	CO1	L4	2M
	c	What are the losses occurring in DC motor?	CO2		2M
	d	What are the precautions to be taken during starting of a DC series motor?	CO2	L1	2M
	e	Define voltage regulation of a transformer.	CO ₃	L1	2M
	f	Why is the rating of transformer expressed in kVA?	CO3	L4	2M
	g	Why short circuit test on a transformer performed on HV side?	CO ₅	L4	2M
	h	What is an auto transformer?	CO ₆	L1	2M
	i	Mention the transients in switching of on-load and off-load tap changers	CO ₅	L2	2M
	j	Write the advantages and dis-advantages of star-star connection.	CO ₅	L1	2M
		<u>PART-B</u>			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Explain the no-load characteristics for separately-excited generator.	CO1	L1	5M
	b	List out the applications of DC generator.	CO1	L1	5M
		OR			
3	a	Deduce an expression for E.M.F equation of DC Generator?	CO ₁	L2	6M
	b	A 4-pole generator having wound armature winding has 50 slots each slot	CO ₁	L1	4M
		contains 20 conductors. What will be the volage generated in the			
		machine, when driven at 1500rpm, assuming the flux per pole to be 70			
		mwb?			
		UNIT-II			
4	a	Explain the characteristics of DC shunt motor.	CO ₂	L2	5M
-		A shunt generator supplies 96A at a terminal voltage of 200V. The			5M
	~	armature and shunt field resistances are 0.1? and 50? respectively. The		220	0111
		iron and frictional losses are 2000W. Find (i) Emf generated (ii) copper			
		losses (iii) commercial efficiency.			
		OR			
5		With the help of neat circuit diagram, explain Swinburne's test and derive	CO2	1.3	10M
		the relations for efficiency (both for generator and motor). Also state the	002	20	101.1
		merits and de-merits of this method			
		UNIT-III			
6		Explain the construction and working principle of 10 transformer.	CO2	12	10M
U		OR	CO3	1.4	TOTAT
		ON			

Find all-day efficiency of a transformer having maximum efficiency of 7 98% at 15kVA at UPF and loaded as follows. 12hrs - 2kW at 0.5pf lag6 hrs. - 12 kW at 0.8 pf lag6hrs – at no-load **UNIT-IV** With a circuit diagram how to obtain equivalent circuit by conducting CO4 L4 10M 8 O.C. & S.C. test in a single-phase transformer. Derive an expression for saving in conductor material in an CO4 L4 10M 9 autotransformer over two winding transformers of equal rating. State its merits and de-merits. **UNIT-V CO5 L4 5M** a Explain star-star connection of transformer with diagram. b List the advantages and dis-advantages of star-star connection of CO5 L4 **5M** transformer. OR a Write the voltage and current relationships for different types of CO5 L2 **5M** connections. **b** A three phase step down transformer takes 15A when connected to **5M** 4400V mains, the turns ratio per phase is 10. Neglecting losses find the secondary line voltage, line current and output power. If the windings are connected in star-delta. *** END ***